Reported on July 6, 2022, in the journal Nature, the observations could inform the design of more efficient electronics.

It isn’t the same with electricity. While an electric current is likewise constructed of distinct particles — in this case, electrons — the particles are so small that any collective behavior among them is drowned out by larger influences as electrons pass through ordinary metals. Ho

It isn’t the same with electricity. While an electric current is likewise constructed of distinct particles — in this case, electrons — the particles are so small that any collective behavior among them is drowned out by larger influences as electrons pass through ordinary metals. However, in particular materials and under specific conditions, such effects fade away, and electrons can directly influence each other. In these specific instances, electrons can flow collectively like a fluid.

 

Now, physicists at MIT and the Weizmann Institute of Science have finally observed electrons flowing in vortices, or whirlpools — a hallmark of fluid flow that theorists predicted electrons should exhibit, but that has never been seen before now.

 

“Electron vortices are expected in theory, but there’s been no direct proof, and seeing is believing,” says Leonid Levitov, professor of physics at MIT. “Now we’ve seen it, and it’s a clear signature of being in this new regime, where electrons behave as a fluid, not as individual particles.”

Reported on July 6, 2022, in the journal Nature, the observations could inform the design of more efficient electronics.

 

“We know when electrons go in a fluid state, [energy] dissipation drops, and that’s of interest in trying to design low-power electronics,” Levitov says. “This new observation is another step in that direction.”

 

Levitov is a co-author of the new paper, along with Eli Zeldov and others at the Weizmann Institute for Science in Israel and the University of Colorado at Denver.


Conncyshah Mona

288 Blog posts

Comments